Al-Farabi Kazakh National University Faculty of Physics and Technology Department of Theoretical and Nuclear Physics

EDUCATIONAL-METHODICAL COMPLEX OF DISCIPLINE

FONT5301 «Fundamental Bases of Nanotechnology»

Specialty "6M074000 – Nanomaterials and Nanotechnologies" Educational program "6M074000 – Nanomaterials and Nanotechnologies"

> Course – 1 Semester – 2 Number of credits – 2

> > Almaty 2018

Educational-methodical complex of the discipline is made by <u>Takibayev N.Zh.</u>, d.s.p.-m., academic of NAS RK, professor lecturer (name, surname, scientific degree, academic rank)

Based on the working curriculum on the specialty "6M074000 - Nanomaterials and Nanotechnologies "

Considered and recommended at the meeting of the department Theoretical and **Nuclear Physics**

from «<u>d8</u> » <u>08</u> 2018 year, protocol № <u>1</u>

Head of department _____ Abishev M.E. (Signature)

Recommended by methodical bureau of the faculty

«<u>31</u> » <u>08</u> 2018 year, protocol № <u>4</u>

Chairman of the method bureau of the faculty ______ Gabdullina A.T. (Signature)

Al-Farabi Kazakh National University Faculty of Physics and Technology Chair of Theoretical and Nuclear Physics

Syllabus Spring semester, 2018-2019 academic year

Academic course information

Discipline's	Discipline's title	Туре	No. of hours per week			Number of	ECTS	
code			Lect.	F	Pract.	Lab.	credits	
YaA5208	Fundamental Bases of Nanotechnology	Elective	1		1	0	2	4
Lecturer	Takibayev N.Zh., d.s.pm., academic of NAS RK, professor			of	Office hours		Scheduled	
e-mail	E-mail: takibayev@gmail.com							
Telephone number	Telephone: 2925-	25-133; 8-777-704-0396			Auditory		319	

Academic	Type of course "Fundamental Bases of Nanotechnology" is elective component				
presentation of	and its purpose: Theoretical Nuclear Physics.				
the course	The aim of the course: to give the students the deep understanding of the modern				
	physics of nucleus of atoms and quantum mechanics of many-particle systems and				
	self-study. As a result of the discipline, the student will be able to:				
	 describe acquired knowledge (specifically) and it's understanding; 				
	- interpret an understanding of the overall structure of the study field and t				
	relations between its elements (specifically);				
	- generalize new knowledge in the context of basic knowledge, interpret its				
er angel de	contents;				
p.8 m 76	 create educational and social interaction and cooperation in the group; 				
	 explain the solution of the problem, its importance; 				
	 classify criticism and to criticize; 				
	 decide to work in a team; 				
	 combine the role of taken course in the implementation of individual learning 				
	paths. The system of descriptor verbs must be used during the formation of				
	competences;				
	- design active and interactive methods which are recommended to ensure				
	deeper understanding and learning of educational material and to achieve				
	learning outcomes of the course (individual researches, group projects, case				
-	studies and their methods).				
Prerequisites	Organization and planning of research, physical fundamentals of microelectronics,				
	nanotechnology in electronics, nanotechnology in metallurgy.				

Post requisites	Nanomodicinal				
rostrequisites	Nanomedicine based on plasma technology, synthesis of carbon composite materials				
	in the plasma medium, nanostructered materials in construction, thermal plasma in nanotechnology.				
Information					
resources	Literature (with an indication of the authors and data output), the				
	availability(number), software and consumables with information about where you can get them.				
	Recommended:				
	1. J. W. Steed, J. L. Atwood (eds.), <i>Encyclopedia of Supramolecular Chemistry</i> , Marcel Dekker, New York, NY, USA, 2004.				
	Ltd, Chichester, UK, 2006.				
	3. K. Ariga, T. Kunitake, Supramolecular Chemistry – Fundamentals and Applications, Springer- Verlag, Heidelberg, 2006				
	4. J. W. Steed, D. R. Turner, K. J. Wallace Core Concents in				
	Supramolecular Chemistry and Nanochemistry, John Wiley & Sons, Ltd, 2007.				
	Additional:				
	1. Introduction to Nano. Basics to Nanoscience and Nanotechnology.				
	2. Nanotechnology: Principles and Practices. Authors: Kulkarni, Sulabha K., 2015.				
	3. Functional Nanostructures. Processing, Characterization, and Applications, Editors: Seal, Sudipta, 2008.				
Academic	Academic Behavior Rules:				
policy of the	Compulsory attendance in the classroom, the impermissibility of late attendance.				
course in the	and undue for absence and undue fardiness to the teacher is actional.				
context of	o Politics.				
university	Academic values:				
moral and	Inadmissibility of plagiarism, forgery, cheating at all stages of the knowledge control,				
ethical values	distributed towards teachers. (The code of KazNII Student's honor)				
Evaluation and	Citeria-pased evaluation:				
attestation	Assessment of learning outcomes in correlation with descriptors (verification of				
policy	competence formation during midterm control and examinations)				
	Summative evaluation:				
	evaluation of the presence and activity of the work in the classroom; assessment of				
	the assignment, independent work of students, (project / case study / program /				
g (54 h	The formula for carculating the final grade.				
	Final grade for the discipline = $\frac{IC1 + IC2}{2} \cdot 0.6 + 0.1MT + 0.3FC$				
v po 🖽	Below are the minimum estimates in percentage terms:				
ng P	5% - 100%: A 90% - 94%: A-				
e programme	5% - 100%: A 90% - 94%: A-				
	5% - 100%: A 90% - 94%: A-				

Calendar (schedule) the implementation of the course content:

Vee	Topic title (less				
ks	Topic title (lectures, practical classes, Independent work of Number Max				
	master students)	of hours	score		
1	Lecture 1 (L. 1) Module 1	011104110	50010		
	Lecture-1 (L-1). The history of the emergence and basic principles of panetschools.	1	-		
	- Indioteciniology				
2	Seminar -1 (S-1). Carbon nanomaterials. Quantum dots.	1	5		
_	of physical interactions on panoscale Quantum machanics	1	-		
3	S-2. X-ray scattering and crystal temperature.	1	5		
3	L-3. Nanosystems Research Methods.	1	-		
	S-3. X-ray diffraction. Optical spectroscopy methods.	1	5		
	MSWT 1. Prepare the report: Electron microscopy (TEM, SEM), Probe	1	20		
	microscopy (STM, AFM, etc.).	_			
4	L-4. Physics of nanodevices. Devices for optoelectronics and	1	-		
	nanoelectronics.				
	S-4. Tunnel diode. Single electronics. LEDs and lasers on	1	5		
	double heterostructures. Photodetectors on quantum wells.	2			
	Module 2	1			
5	L-5. Optical switches and filters.	1	-		
	S-5. Magnetic nanodevices for recording and storing	1	5		
	information.				
	MSWT 2. Prepare the report: Nanosensors.	1	20		
6	L6. Supramolecular approaches to the synthesis of	1	-		
	nanoobjects.				
	S6. Discrete supramolecular nano-objects.	1	5		
7	L7. Determination of supramolecular (SM) chemistry.	1	-		
	S7. Supermolecules and SM ensembles. Classification of	1	5		
	intermolecular interactions.		900		
	MSWT 3. Prepare the report: The concept of their energy	1	25		
	and orientation.		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	1st Intermediate Control (IC1)		100		
8	Midterm (MT)		100		
8	L-8. Hydrogen bond (VS). Components VS. Multiple sun.	1			
	Sun in Nature. Examples of synthetic use of the sun.				
	S-8. Endo-receptors. Coordination liaison (CS). Examples of	1	5		
	discrete complexes. Exo receptors. Examples of use for	-			
	constructing discrete (0D) CM polygons and polyhedra.				
	Module 3				
9	L-9. Supramolecular approaches to the synthesis of	1			
,	nanoobjects.	1	-		
	S-9. Supramolecular polymers.	-	-		
	5-7. Supramolecular polymers.	1	5		

	MSWT 4. Prepare the report: Coordination polymers (KP) as	1	10
	a subclass of CM polymers.1D, 2D and 3D KP - chains,		
	grids and frames - geometric requirements for tectons.		
10	L-10. Functional inorganic nanomaterials.	1	-
	S-10. Lithium batteries are the most efficient energy storage	1	5
	devices.		
11	L-11. Nanomaterials for fuel cells - the most efficient sources	1	· -
	of electrical energy.		
	S-11. High-temperature superconductors - 21st century	1	5
	materials for efficient use of energy.		*
	MSWT 5. Prepare the report: Functional inorganic	1	10
	nanomaterials.		
12	L-12. Perovskite structure - an inexhaustible source of new	1	-
	materials.		
	S-12. Nanomaterials for fuel cells - the most efficient sources	1	5
	of electrical energy.		***
13	L-13. Nucleic acid nanotechnology.	1	-
7-	S-13. DNA in nanotechnology.	1	5
	MSWT 6. Prepare the report: DNA based materials.	1	20
14	L-14. Nanotechnology in drug delivery.	1	-
	S-14. Behavior patterns of nanoparticles in the body.	1	5
15	L-15. Nanobioanalytical systems: from molecular	1	-
	recognition to biodetection.		
	S-15. Development of bioanalytical methods.	1	5
	MSWT 7. Prepare the report: Theoretical foundations of	1	25
	molecular recognition processes.		
	2 nd Intermediate Control (IC2)		100
	Exam		100
	Total		100

Lecturer	din	Takibayev N.Zh.
Head of the Department	9	Abishev M.E.
Chairman of the Faculty Methodical Bureau	Haday	Gabdullina A.T.
	1.	